## Analyse Angles at a Vertex

Select the Angle tool and choose:

`ANGLES AT A VERTEX`

Click on a Primal or Dual vertex. The angle data is listed in the log. The angle in red is the angle between `Edge D` and the `Hub Normal`.

The angle psi 'ψ', in yellow, is the angle between `Edge D` and the `Hub Plane`. This gives the bend angle for the end of a strut so that it may be bolted to a hub (as in a simple bolt-hub mechanism).

```
HUB ANGLES AT VERTEX QE_ID: 1
UN_ID: 545
Hub Label: ?

Angles at vertex:
<A,o,B =  68.8619764
= 068° 51' 43.1150400"

<B,o,C =  68.8619764
= 068° 51' 43.1150400"

<C,o,D =  68.8619764
= 068° 51' 43.1150400"

<D,o,E =  68.8619764
= 068° 51' 43.1150400"

<E,o,A =  68.8619764
= 068° 51' 43.1150400"

-- unique angles at vertex: 1

Sum = 344.3098820
Angular defect = 15.6901180

Angles on hub plane:
<A,o,B =  72.0000000
= 072° 00' 0.0000000"

<B,o,C =  72.0000000
= 072° 00' 0.0000000"

<C,o,D =  72.0000000
= 072° 00' 0.0000000"

<D,o,E =  72.0000000
= 072° 00' 0.0000000"

<E,o,A =  72.0000000
= 072° 00' 0.0000000"

Hub plane sum = 360.0000000

Angles between hub normal | and edges:
<|,o,A  =  105.8587372
= 105° 51' 31.4539200"

<|,o,B  =  105.8587372
= 105° 51' 31.4539200"

<|,o,C  =  105.8587372
= 105° 51' 31.4539200"

<|,o,D  =  105.8587372
= 105° 51' 31.4539200"

<|,o,E  =  105.8587372
= 105° 51' 31.4539200"

Angles between hub plane and edges:
< ψ,A  =  15.8587372
= 015° 51' 31.4539200"

< ψ,B  =  15.8587372
= 015° 51' 31.4539200"

< ψ,C  =  15.8587372
= 015° 51' 31.4539200"

< ψ,D  =  15.8587372
= 015° 51' 31.4539200"

< ψ,E  =  15.8587372
= 015° 51' 31.4539200"

<----------------------------------------------------->
```